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Abstract

This paper describes a method for computing a bivariate probit model
on panel data with correlated random e¤ects. Instead of an approach
using simulated maximum likelihood, an alternative method based on a
two-step Gauss-Hermite quadrature in order to evaluate the likelihood
function is proposed in this article. A simulation shows the importance
to estimate the correlation in random e¤ects and the correlation between
both equations. Finally an application is performed to estimate the deter-
minants of product or process innovations on a large panel of French �rms
covering the period 2000-2013. It shows a positive and very large correla-
tion between unobserved individual characteristics of �rms, as well as a
positive correlation between the idiosyncratic shocks. We show also small
di¤erences in the the determinants of product or process innovations.
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1 Introduction

The estimation of a probit model on panel data is now usual. Many softwares
propose such method of estimation which relies on individual random e¤ects
because the �xed e¤ects approach is not valid due to the incidental parameters
problem in the non-linear panel data model. In a seminal paper, Butler and
Mo¢ tt (1982) suggested to integrating the conditional density over the distrib-
ution of the individual e¤ects in order to eliminate them by taking an average
density. They proposed to use a Gauss-Hermite Quadrature to compute this
integral for each individual in the panel.
On the other hand, many empirical problems imply two binary variables.

The classic bivariate probit model is now common for cross-section data, but
no usual procedure is available for panel data where there is individual random
e¤ects in each equation. Sometimes it is interesting to estimate the correlation
between the individual e¤ects of the two equations, because it shows how the
unoberved heterogeneity between individuals is correlated accross equations,
while there is still a correlation between the idiosyncratic error terms in the two
equations.
Therefore a joint estimation of a bivariate probit model implies, as in the

method of Butler and Mo¢ tt, to integrate the conditional density over the
bivariate distribution of individual random e¤ects. Lee and Oguzoglu (2007) and
Kano (2008) have proposed a simulated maximum likelihood approach where
the individuals e¤ects are integrated out by computing the double integral by
simulation. But this procedure could be very time-consuming even with fast
modern computer. In this article, an alternative approach based on a two-step
Gauss-Hermite Quadrature is used in order to compute this double integral.
Such a method has been already investigated in the context of a Heckman
selection model on panel data by Raymond et al (2007, 2010). This paper
adapts the method in the case of a bivariate panel data model in the section
2. A similar method has been proposed by Moussa and Delattre (2015) in the
context of a causality analysis in a bivariate dynamic probit model.
A simulation analysis is done in Section 3 in order to show the importance of

taking account individual e¤ects in estimation of a probit model on panel data.
The separated estimation of the two probit models shows clearly that they are
consistent due to the fact that the model is correctly speci�ed and that the
correlations between the individual e¤ects or between the error terms are only
of second order. In fact like in a seemingly unrelated regression equations model,
there is only a gain in e¢ ciency of taking account of the covariance structure
of the error terms composed of an individual e¤ect and a idiosyncratic error.
However the estimation of the correlations is of interest in order to assess the
e¤ects of unobserved heterogeneity on each equation.
Finally in Section 4, we present an application of this procedure in the case

of the estimation of the determinants of product and process innovations on a
large panel of 7 651 French �rms during the period 2000 - 2013. The annual
French data indicate only whether a �rm, with positive R&D expenditures,
introduces a product or a process innovation during the year. The model ex-
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plaining the product or process innovations is simple because it depends only
on the variables coming from the French R&D surveys : size of the �rm and on
the R&D intensity, characteristics of the R&D. Some conclusions are drawn for
the estimation of the bivariate model for product and process innovation. We
found some weak di¤erences in the determinants of product or process innova-
tion behavior. It seems that the di¤erences betwwen them are di¤uclt to assess
within a �rm or that a product innovation is always linked. The introduction
of a new product leads to the introduction of a new process of production. The
lack of information on the market on which the �rms operates, or the level of
competiton on this market could explained the di¢ culty to assess a di¤erence
between the two innovations.

2 The random e¤ect bivariate probit

2.1 The bivariate probit model

Here we present brie�y the bivariate probit model1 . Thismodel is composed by
2 latent variables y�1 and y

�
2 which are explained by exogenous variables x1 and

x2 and by possibly correlated error terms "1 and "2, normally distributed with
unit variances2 . and correlation coe¢ cient � :�

y�1 = x
0
1�1 + "1

y�2 = x
0
2�2 + "2

where " =
�
"1
"2

�
� i:i:d:N

��
0
0

�
;

�
1 �
� 1

��
If the data are observed on several individuals only, we obtain the classical

bivariate probit model when the observed variables y1 and y2 are de�ned as :�
y1 = 1 (y

�
1 > 0)

y2 = 1 (y
�
2 > 0)

where 1 (:::) is the indicator function with value one if the expression in paren-
thesis is true, and zero otherwise. The maximum likelihood estimator is then
simply obtained with the classical transformation :

qj = 2yj � 1; j = 1 or 2

such that the probability of a given choice between the 4 possible con�gurations
of choice is :

Pr (Y1 = y1; Y2 = y2jx1; x2;�1; �2; �) = �2 [q1 (x01�1) ; q2 (x02�2) ; q1q2� ]
1See for example : Greene (2008, Section XXI.6).
2The classical normalization of variances to unity is done here because only the signs of

the latent variables are observed. Therefore the scale does not matter.
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with �2 (�) is the cumulative density fonction of the bivariate standard normal
distribution :

�2 [u1; u2; � ] =

Z u1

�1

Z u2

�1
�2 (z1; z2; �) dz1dz2

=

Z u1

�1

Z u2

�1

1

2�

1p
1� �2

exp

�
�z

2
1 + z

2
2 � 2�z1z2

2 (1� �2)

�
dz1dz2

where �2 (�) is its probability density function of a bivariate standard normal
variable with correlation � . As the N observations of the sample are indepen-
dent, the log-likelihood function is given by :

ln$ =
nX
i=1

ln�2
�
q1;ix

0
1;i�1; q2;ix

0
2;i�2; q1;iq2;i�

�
which should be maximized to obtain the maximum likelihood estimator of the
bivariate probit model3 . Greene (2008) gives the analytic �rst and second order
conditions of the estimation problem.
When the observations come from a panel of individuals observed during a

given time period (supposed here for simplicity to be the same for all individuals
such that the panel is balanced), there is often an individual e¤ect to take
account of the unobserved heterogenity of the individuals. However with a non-
linear model, like the probit model, if the individual e¤ects are treated as �xed
or correlated with the explanatory variables, there is an incidental parameters
problem (Neyman and Scott, 1948; Lancaster, 2000; or Cameron and Trivedi;
2006). Thus we need to assume that individual e¤ects are not correlated with
the explanatory variables, and we use a random e¤ects model with a speci�ed
distribution. These random e¤ects are then eliminated by integrating over the
distribution.
The univariate probit case has been �rst studied by Butler and Mo¢ tt (1982)

and Skrondal and Rabe-Hasketh (2004). We generalize this univariate random
e¤ect probit model to the case of two latent variables for i = 1; :::; N individuals
and t = 1; :::; T time periods :

�
y�1;it = x

0
1;it�1 + �1;i + "1;it

y�2;it = x
0
2;it�2 + �2;i + "2;it

for i = 1; :::; N and t = 1; :::; T .

where :

8>><>>:
"it =

�
"1;it
"2;it

�
� i:i:d:N

��
0
0

�
;

�
1 �
� 1

��
�i =

�
�1;i
�2;i

�
� i:i:d:N

��
0
0

�
;

�
�21 ��1�2

��1�2 �22

��
Here we assume implicitly that the observations are independant over time and
accross indivisuals. The explanatory variables are exogenous with respect to

3See for example the estimation procedure biprobit in Stata (Hardin, 1996).

4



the error terms and with the individual random e¤ects. This last hypothesis
could be relaxed by introducing the average values of the regressors along the
lines proposed by Mundlak (1978) if the individual e¤ect can be decomposed
on a linear combination of the averaged regressors plus an uncorrelated e¤ects.
The observed model is: �

y1;it = 1
�
y�1;it > 0

�
y2;it = 1

�
y�2;it > 0

�
Let us de�ne the classical transformation of the observed variables :�

q1;it = 2y1;it � 1
q2;it = 2y2;it � 1

2.2 The individual joint density function

Because of the independance of observations over time, the conditional joint
density for the T observations of the ith individual is:

fi (yijXi; �i; �; �) =
TY
t=1

fit (yitjXit; �i; �; �)

As we have assumed a normal distribution for the error terms in the latent
model, the density for an observation is given as in the bivariate probit model
above:

Pr (Y1 = y1; Y2 = y2jx1; x2;�i; �; �)
= �2 (q1 (x

0
1�1 + �1) ; q2 (x

0
2�2 + �2) ; q1q2�)

where the individual random e¤ects are added up to the conventional observable
parts of the latent functions. The joint density for an individual, conditional to
the vector of the individual random e¤ects �i = (�1;i; �2;i), is then:

fi (yijXi; �i; �; �) =
TY
t=1

�2
�
q1;it

�
x01;it�1 + �1;i

�
; q2;it

�
x02;it�2 + �2;i

�
; q1;itq2;it�

�
Assuming a normal disribution for these individual random e¤ects with vari-

ances �21 and �
2
2 respectively and a correlation coe¢ cient �, the density function

for the individual e¤ects is given by :

gi
�
�ij�21; �22; �

�
=

1

2�

1p
�21�

2
2 (1� �2)

�

exp

(
�1

2 (1� �2)

"�
�1;i
�1

�2
� 2�

�
�1;i
�1

��
�2;i
�2

�
+

�
�2;i
�2

�2#)
This density function does not depend on observables but on the three parame-
ters which should be estimated. The unconditional (to the individual random
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e¤ects) joint density for the ith individual is obtained by averaging over the
distribution of these individual e¤ects :

`i
�
yijXi; �; � ; �21; �22; �

�
=

Z +1

�1

Z +1

�1
fi (yijXi; �i; �; �)� gi

�
�ij�21; �22; �

�
d�1;id�2;i

=

Z +1

�1

Z +1

�1

"
TY
t=1

�2
�
q1;it

�
x01;it�1 + �1;i

�
; q2;it

�
x02;it�2 + �2;i

�
; q1;itq2;it�

�#
�

1

2�

1p
�21�

2
2 (1� �2)

� (1)

exp

(
�1

2 (1� �2)

"�
�1;i
�1

�2
� 2�

�
�1;i
�1

��
�2;i
�2

�
+

�
�2;i
�2

�2#)
d�1;id�2;i

2.3 Decomposition of the double integral

The evaluation of the individual likelihood function (1) requires the computation
of a double integral. Lee and Oguzoglu (2007) and Kano (2008) have proposed a
method of computation by simulation where �1;i and �2;i are randomly drawn in
the bivariate normal distribution4 . The individual joint density (unconditional
to the individual random e¤ects is approximated by :

`i
�
yijXi; �; � ; �21; �22; �

�
=

Z +1

�1

Z +1

�1
fi (yijXi; �i; �; �)� g

�
�ij�21; �22; �

�
d�1;id�2;i

' 1

R

RX
r=1

"
TY
t=1

�2

�
q1;it

�
x01;it�1 + a

(r)
1;i

�
; q2;it

�
x02;it�2 + a

(r)
2;i

�
; q1;itq2;it�

�#
(2)

where
�
a
(r)
1;i

�
and

�
a
(r)
2;i

�
are R random draws in a bivariate normal distribution: 

a
(r)
1;i

a
(r)
1;i

!
� i:i:d:N

��
0
0

�
;

�
�21 ��1�2

��1�2 �21

��
However the computation should be very time-consuming and imprecise even
though we use modern simulator like GHK or Halton simulators, because we
need to compute R cumulative density function with a large value of R in order
to obtain su¢ cient precision in the log-likelihood function.
Instead we use the two-step Gauss-Hermite quadrature technique originally

proposed in a couple of papers by Raymond et al. (2007, 2010) in the case of

4Miranda (2010) suggests the same procedure in an unpublished paper presented at the
Mexican Stata Conference in 2010.
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an Heckman sample selection model on panel data. There is also a paper by
Moussa and Delattre (2015) which use an adaptative Gauss-Hermite procedure
for a bivariate dynamic probit model estimated on panel data.This method relies
on a decomposition of the two-dimensional normal distribution for the individ-
ual e¤ects into a one-dimensional marginal distribution and a one-dimensional
conditional distribution.
The unconditional joint density for the ith individual is rewritten as:

`i
�
yijXi; �; � ; �21; �22; �

�
=

Z +1

�1

Z +1

�1
fi (yijXi; �i; �; �)�

1

2�

1p
�21�

2
2 (1� �2)

�

exp

(
�1

2 (1� �2)

"�
�1
�1

�2
� 2�

�
�1
�1

��
�2
�2

�
+

�
�2
�2

�2#)
d�1d�2

=

Z +1

�1

Z +1

�1
fi (yijXi; �i; �; �)�

1

2�

1p
�21�

2
2 (1� �2)

�

exp

(
�1

2 (1� �2)

"�
�1;i
�1

�2
� 2�

�
�1;i
�1

��
�2;i
�2

�#)
� exp

"
�1
2

(�2;i/�2)
2

1� �2

#
d�1;id�2;i

which can be in turn rewritten as:

`i
�
yijXi; �; �21; �22; �

�
=

Z +1

�1
Hi (�2;i)� exp

"
�1
2

(�2;i/�2)
2

1� �2

#
d�2;i (3)

with

Hi (�2;i) =
1

2�

1p
�21�

2
2 (1� �2)

Z +1

�1
fi (yijXi; �i; �; �)�

exp

(
�1

2 (1� �2)

"�
�1;i
�1

�2
� 2�

�
�1;i
�1

��
�2;i
�2

�#)
d�1;i

Let us evaluate this last function by using a gauss-Hermite Quadrature by
doing a change in variable such that (�1/�1) = z1

p
2 (1� �2) with d�1 =
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�1
p
2 (1� �2)dz1 such that5 :

H (�2) =
1

2�

�1
p
2 (1� �2)p

�21�
2
2 (1� �2)

Z +1

�1
`i

�
yijXi; z1�1

p
2 (1� �2); �2;�; �

�
�

exp

(
�1
2

z212
�
1� �2

�
1� �2

)
� exp

�
�

(1� �2)z1
p
2 (1� �2)

�
�2
�2

��
dz1

=
1

�
p
2�22

Z +1

�1
fi

�
yijXi; z1�1

p
2 (1� �2); �2;�; �

�
�

exp

(
�
p
2p

1� �2

�
�2
�2

�
z1

)
� exp

�
�z21

	
dz1:

This is a Gaussian integral which can be approximated by a Gauss-Hermite
quadrature with weights !m and abscissas am for M integration points (m =
1; :::;M)6 : Z +1

�1
f (z) e�z

2

dz '
MX
m=1

!mf (am)

Thus the H (�2) function is approximated by :

Hi (�2;i) '
1

�
p
2�22

MX
m=1

!mfi

�
yijXi; am�1

p
2 (1� �2); �2;i;�; �

�
exp

"
�
p
2p

1� �2

�
�2;i
�2

�
am

#
:

Now the second step of the procedure is to introduce this function in the
individual joint density `i

�
yijXi; �; � ; �21; �22; �

�
above (3) with a second change

in variables (�2/�2) = z2
p
2 (1� �2) with d�2 = �2

p
2 (1� �2)dz2 to obtain:

5We drop the individual index i for the clarity of the exposition.
6The more the number of points, the more precise is the approximation. Genrally the

number of points is set to 8; 12 or 16 (see Cameron and Trivedi, 2005, Section XII.3.1). The
values of weights !m and abscissas am can be found in mathematical textbooks.
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`i
�
yijXi; �; � ; �21; �22; �

�
=

Z +1

�1
H (�2) exp

"
�1
2

(�2/�2)
2

1� �2

#
d�2;i

=
1

�
p
2�22

Z +1

�1

MX
m=1

!mfi

�
yijXi; am�1

p
2 (1� �2); �2;�; �

�
� exp

"
�
p
2p

1� �2

�
�2
�2

�
am

#
� exp

"
�1
2

(�2/�2)
2

1� �2

#
d�2

=
�2
p
2 (1� �2)
�
p
2�22

Z +1

�1

MX
m=1

!mfi

�
yijXi; am�1

p
2 (1� �2); z2�2

p
2 (1� �2); �; �

�
� exp

"
�
p
2p

1� �2
z2
p
2 (1� �2)am

#
� exp

"
�1
2

z222
�
1� �2

�
1� �2

#
dz2

=

p
1� �2
�

Z +1

�1

MX
m=1

!m`i

�
yijXi; am�1

p
2 (1� �2); z2�2

p
2 (1� �2); �; �

�
� exp [2�amz2]� exp

�
�z22

�
dz2

A second Gauss-Hermite quadrature can be used to compute this Gaussian
integral. For P integration points (p = 1; :::; P ), we have the weights !p and the
abscissas ap. Finally the individual joint density unconditional to the individual
e¤ects can be approximated by :

`i
�
yijXi; �; � ; �21; �22; �

�
(4)

'
p
(1� �2)
�

PX
p=1

MX
m=1

!p!m exp [2�amap]

 
TY
t=1

�2 (q1u1;m; q2u2;p; q1q2�)

!

where the arguments of the bivariate cumulative density function are :

u1;m = x01�1 + am�1
p
2 (1� �2)

u2;p = x02�2 + ap�2
p
2 (1� �2)

Finally as the individuals are independent, the log-likelihood function should
be expressed as:
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ln$ =
NX
i=1

ln `i
�
yijXi; �; � ; �21; �22; �

�
= �N ln (�) + N

2
ln
�
1� �2

�
+

NX
i=1

ln

 
PX
p=1

MX
m=1

!p!m exp [2�amap]
TY
t=1

�2 (q1;iu1;m;i; q2;iu2;m;i; q1;iq2;i�)

!
(5)

In order to maximize this log-likelihood function, we can use the usual trans-
formations for the correlation coe¢ cients:8<: �� = a tanh � = 1

2 ln
�
1+�
1��

�
�� = a tanh � = 1

2 ln
�
1+�
1��

�
or (

� = exp(2��)�1
exp(2��)+1

�� = exp(2��)�1
exp(2��)+1

At each evaluation of the likelihood function, it is necessary to compute
N �M � P cumulative density functions of the bivariate normal variables �2
with this two-step quadrature, which seems much more reasonable relative to the
computation of N �R2 cumulative density functions for the simulated method.
In fact we should have a su¢ ciently good approximation with M = P = 12
points in the Gauss-Hermite quadrature, even though we shoud take at least
R = 200 points for the computation by simulation with less precision. The
two procedures of estimation of the bivariate probit model by maximum likeli-
hood have been written in a Stata program either with the simulated maximum
likelihood or with the Gauss-Hermite quadrature7 .

3 A simulation

A simulation of the procedures for the estimation of the bivariate probit model
has been performed in order to assess the e¤ect of neglecting the correlation
between the two equations, and between the unobserved heterogeneity in each
equation. A set of observations for N individuals during T periods has been
generated for a bivariate latent process:

�
y�1 = �1;0 + �1;1x1 + �1;2x2 + �1 + "1
y�2 = �2;0 + �2;1x1 + �2;2x2 + �2 + "2

where " =

�
"1
"2

�
� i:i:d:N

��
0
0

�
;

�
1 �
� 1

��
7These programs uses the maximum likelihood procedures in Stata by Gould et al. (2010).
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where the exogenous variables x1 and x2 have been drawn independently for each
observations in a standard normal distribution. The individual e¤ects �1 and
�2 have been also drawn into a bivariate normal distribution with correlation
�: �

�1
�2

�
� i:i:d:N

��
0
0

�
;

�
�21 ��1�2

��1�2 �22

��
:

Then the observable dependent variables are constructed on the basis of the
sign of the corresponding latent variables:�

y1 = 1 (y
�
1 > 0)

y2 = 1 (y
�
2 > 0)

In the following simulations, the number of individuals has been set to 1 000
with 10 periods for each individuals, such that there are 10 000 observations
in the panel data set which corresponds to the usual size of such data. The
true structural parameters in the model are the following : �1;0 = 0:50; �1;1 =
1:00; �1;2 = 0:00 and �2;0 = �0:50; �2;1 = �0:50; �2;2 = 1:00 . Therefore the
second explanatory variable appears only in the second equation. The correla-
tion coe¢ cient of the error terms has been set to � = 0:50, the same value has the
correlation coe¢ cient between the individual random e¤ects : � = 0:50, while
the standard deviation of these individual e¤ects are the same: �1 = �2 = 2:00.
The observed patterns of response in this simulated model is the shown

in the Table 1.This simulated data set exhibits an association between both
dependent variable with a Kendall�s-tb measure of association of 0.222 with a
standard error of 0.010, as well a Pearson Chi-squared of 491.55 showing clearly
a positive signi�cant association between the two observed dependent variables.
Moreover the tetrachoric correlation is 0.349 with a standard error 0.015 which
is less than the assumed correlation between the error terms in the latent model.

y2
0 1 Total

y1 0 29.7 % 12.4 % 42.0 %
1 28.1 % 29.9 % 58.0%

Total 57.7 % 42.3 % 100 %

Table 1 : Contingency table of the binary variables in the simualted model.

This simulated data set exhibits an association between both dependent
variable with a Kendall�s-tb measure of association of 0.222 with a standard
error of 0.010, as well a Pearson Chi-squared of 491.55 showing clearly a positive
signi�cant association between the two observed dependent variables. Moreover
the tetrachoric correlation is 0.349 with a standard error 0.015 which is less than
the assumed correlation between the error terms in the latent model.
The model is estimated by a pooled bivariate probit method where there are

no individual e¤ects as a benchmark for estimations. Then it is estimated using
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the Gauss-Hermite Quadrature (with 12 points) allowing individual e¤ects. We
proceed to four estimations : the �rst one (estimation 1) with the individual
random e¤ects but with a zero correlation between error terms (� = 0) and a
zero correlation between the individual e¤ects (� = 0), the second estimation
(2) allows for an estimated correlation between the error terms (�), wile the
third estimation (3) allows only a correlation between the individual e¤ects (�).
Finally the last estimation (4) is the complete model where both correlations
must be estimated. The standard likelihood ratio tests are performed in order
to verify the assumption about the individual e¤ects and the correlations in the
model.
The Gauss-Hermite Quadrature procedure with 12 integration points is here

faster by 40 % than the simulated maximum likelihhod procedures performed
on the same dataset and on the same computer. Even though the convergence
is quite fast in three or four iterations starting with the initial values from the
two univariate panel probit estimations, it takes hovever between 7 minutes (for
the �rst estimation) to 14 minutes (for the last estimation) to perform such a
regression8 on 10 000 observations for a model with only 3 parameters in each
equation !
The benchmark estimation is clearly biased for the structural parameters of

each equation because there is no individual e¤ects. Only a correlation between
the idiosyncratic error terms is estimated with an estimated value (0.511) close
to the theoretical correlation (0.50). Let us remark that the parameter esti-
mates are less than the half of their theoretical values. A likelihood ratio test
rejects clearly this hypothesis of no individual random e¤ects. Introducing indi-
vidual random e¤ects in the estimation but with no correlation is equivalent to
two distinct estimation of a random e¤ect probit model for each equation. The
structural parameter estimates are now close to their theoretical value, taking
account their standard errors. This is rather the case for the second equation,
while the �rst one presents estimates a litle bit smaller than theitr theoreti-
cal values. However the estimated standard deviations of the individual e¤ects
are lower than expected for both equations. The likelihood ratio tests of the
correlations between individual e¤ects and/or between the error terms in the
model clearly accept the presence of such correlations in the estimations. More-
over these estimated correlations have a very small estimated standard error,
even though they are non-linear transformations of the estimated parameters in
constructing interval con�dence foor these correlations.

8The estimation are performed on a Dell OptiPlex 9010 with a i7 Intel processor running
at 3.4 Ghz. The procedures are written in a standard code for maximum likelihhod estimation
with Stata 12 software.
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Benchmark (1) (2) (3) (4)
Equation 1

�1;0 0:212 0:429 0:440 0:436 0:446
[= 0:50] (0 :013 ) (0 :047 ) (0 :047 ) (0 :052 ) (0 :051 )
�1;1 0:408 0:928 0:927 0:942 0:939

[= 1:00] (0 :014 ) (0 :027 ) (0 :026 ) (0 :027 ) (0 :027 )
�2;1 �0:005 �0:005 �0:004 �0:004 �0:003

[= 0:00] (0 :013 ) (0 :020 ) (0 :020 ) (0 :020 ) (0 :020 )
Equation 2

�1;0 �0:218 �0:523 �0:507 �0:545 �0:511
[= �0:50] (0 :013 ) (0 :067 ) (0 :061 ) (0 :067 ) (0 :065 )
�1;1 �0:220 �0:489 �0:493 �0:495 �0:497

[= �0:50] (0 :014 ) (0 :022 ) (0 :022 ) (0 :023 ) (0 :022 )
�2;1 0:465 1:016 1:008 1:029 1:022

[= 1:00] (0 :014 ) (0 :028 ) (0 :028 ) (0 :028 ) (0 :028 )
Standard Error of Individual E¤ects

�1 0 1:777 1:737 2:002 1:995
[= 2:00] � (0 :098 ) (0 :095 ) (0 :128 ) (0 :127 )
�2 0 1:668 1:637 1:902 1:895

[= 2:00] � (0 :092 ) (0 :090 ) (0 :124 ) (0 :122 )
Correlations

� 0:511 0 0:534 0 0:476
[= 0:50] (0 :014 ) � (0 :046 ) � (0 :036 )
� 0 0 0 0:550 0:536

[= 0:50] � � � (0 :027 ) (0 :027 )
Log Likelihood �11972:8 �7896:7 �7816:4 �7762:9 �7688:3
Standard errors of estimates in parenthesis.
True value of parameters in squared brackets in �rst column.

Table 2 : Simulation Results

If a correlation between the error terms in both equations is allowed (� 6= 0),
the estimated results are closer from the theoretical values, while the standard
deviation of the individual e¤ect are again under-estimated. In the opposite if
only a correlation between individual random e¤ects is allowed in the estimation
(� 6= 0), there are small changes in the structural parameters estimates, even
though the estimated standard deviations of the individual e¤ects are now close
from their theoretical values. The same conclusions are obtained in the full
model where both correlations are estimated. All estimated parameters are now
very close from their theoretical values, and the hypothesis of no correlations
between individual e¤ects and between error terms is clearly rejected by the
likelihood ratio tests.
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4 An application to product and process inno-
vations

In this section, we investigate the behavior of product and process innovations
on a panel of French �rms on the period 1999 - 2007. The data comes from
the annual R&D surveys conllected each year by the Ministry of Research. The
1999 reform of the R&D surveys in France introduced two new question s about
the product or the process innovations. These question are stated as :

"During the year, did your enterprise or your group introduce new or
signi�cantly improved goods coming from the R&D activity of your �rm?"

(Yes or No)
"During the year, did your enterprise or your group introduce new or
signi�cantly improved methods of manufacturing or producing goods or

services coming from the R&D activity of your �rm?"
(Yes or No)

These questions are slightly di¤erent from the usual Community Innovation
Survey (CIS) questionnaire because in the latter the time period is prolonged
over 3 years. For examples in the CIS 2004 questions, the �rst words are replaced
by �During the three years 2002 to 2004,...�. Moreover in the French R&D
surveys, only innovations coming from the R&D done by the �rm are considered.
That excludes the innovations which were introduced without any R&D e¤ort.
On the other hand, the product or process innovations can be done by another
�rm in the group. This is why the answers to the CIS surveys and the R&D
surveys are not directly comparable. But the most important di¤erence is that
in CIS surveys, the innovations are accounted for on the three years period.
A second problem arises from the fact that �rms has many di¢ culties to

disentangle product or process innovations, even though the de�nitions from
the Oslo manual are quite precise (see the discussion in Mairesse and Mohnen,
2001). When a �rm introduces a new product on the market, it changes and
improves also the methods of production. Therefore, the product and process
innovations is linked at the �rm level. Even though this problem of measurement
is a serious one, we will consider both types of innovations in the following.
While there are some �rms which innovates only in product or in process, the
statistical di¤erence between both types of innovations are thin. There are also
cross relationships between product and process innovations.

4.1 Data and Descriptive Statistics

The sample of the French R&D surveys covers a 14 years period : from 2000 to
2013. We use only data coming from the annual R&D surveys. This avoids the
losses of many observation due to the merge with other sources like the �nan-
cial data of the �rms. Only �rms with at least 3 consecutive years of data are
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retained in the sample. There are 7 651 �rms, corresponding to 37 847 observa-
tions in the unbalanced sample9 . 69.4 % of �rms report an innovation in a new
product during the year, while there are 65.7 % of �rms indicating a process
innovation. But large �rms are more innovative than smaller �rms. When the
share of innovators are weighted by employment, the rate of innovation rises to
81 % for both product and process innovations. In fact about 60 % of small and
medium-sized �rms report an innovation, either in product or in process, while
85 % of large �rms (more than 2000 employees) introduce an innovation during
a given year.

Process Innovation
NO YES TOTAL

Product NO 20.1 % 10.5 % 30.6 %
Innovation YES 14.3 % 55.1 % 69.4 %

TOTAL 34.4 % 65.6 % 100 %
37 847 observations, 7 651 �rms, 2000 - 2013.

Table 3 : Share of Product and Process Innovators in France.

There is a positive and large association between product and process asso-
ciation. More than a half of the observations in the sample shows both types of
innovation, while routhly one �fth of the sample reports no innovation at all,
neither in product nor in process, even though the �rms are doing R&D during
the year. Finally 10.5 % of observations show only a product innovation, while
14.3 % only a process innovation. The Kendall�s-�B measure of association is
0.437 with an asymptotic standard error of 0.005 showing a large and positive
association between both types of innovations. Finally the tetrachoric corre-
lation is 0.649 with a standard error 0.006. This clearly demonstrates the link
between both type of innovations at the �rm level. But this high correlation
can be due to the unobserved characteristics of the �rm, or rather to an idio-
syncratic shock a¤ecting both innovations at each period. We will estimate a
simple bivariate probit model determining each type of innovations at the �rm
level to illustrate which correlations are the most important at the �rm level.
In the estimation of the bivariate probit model for both types of innovation,

only variables found in the annual R&D surveys are used. This includes the
size of the �rm, measured by the total employment (L) and its square

�
L2
�
to

capture the positive e¤ect of size on the declared innovations. The second main
variable is the R&D intensity: R=Y , i.e. the total R&D expenditure divided by
the total turnover of the �rm. The squared value of the R&D intensity (R=Y )2

is also introduced in the model in order to capture a non linear e¤ect. The other
explicative variables are : the logarithm of the productivity log(Prod), measured
as the turnover per employee; the share of the external R&D (Ext: R&D); and
the share of applied R&D (Applied R&D) or experimental R&D10 (Experim

9The detailed composition of the sample is given in Appendix A.
10The share of basic R&D has been excluded to avoid multicolinearity, as these shares sum

up to unity.
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R&D) in the internal R&D. We also have in the surveys the total amount of
R&D which is publicly �nanced by direct aid (grants, contract, subsidies,...).
We use in the regression the share of R&D publicly �nanced (Public R&D)
as well as a dummy if the �rm has received a public aid to R&D in the year
(Subsidies). A dummy variable (R&D Lab)for the existence of a formal research
laboratory inside the �rm is also available. Finally �rms are asked to declare
the share of their internal R&D which is devoted to new technologies (Hitech)
which is decomposed in several categories : computer (Computer), environment
(Environment), new materials (New Mat:) and biotechnologies (Biotech). The
descriptive statistics on these variables are given in the Table 4 where t-tests for
the equality of means and F-tests of equality of variances are performed between
product / process innovators and non-innovators. The di¤erence in variance is
nearly always signi�cant at 1% level. The equality of variance is only accepted
in for R&D lab dummies (at 10% level), and for environment share of R&D
for process innovations. Therefore the t-test is adapted to take account of a
di¤erent variances between the groups.
The average size of �rms is quite large with 841 employees. But the size

distribution is skewed with a median of 120 employees. This is also a lot of
small �rms because the the �rst quartile of the distribution is only 35 employees.
The larger the �rm is, the more innovative in product or in process, because
the avrage size of product innovator is 951 employees against 590 employees
for non-innovators. The process innovators are larger again with an average
size of 1002 employees. These di¤erences in size between innovators and non-
innovators are highly signi�cant. The R&D intensity (Total R&D over the total
turnover) is also skewed because the median R&D intensity is 5.2% while the
average is 17.3% of total turnover. However, even though the di¤erences between
innovators and non-innovators for the R&D instensity are signi�cant, theya re
quite small. In fact the product innovators have a smaller R&D intensity (-0.8%)
than the non-innovators, while for process innovators, they have an average R&D
intensity slightly larger by 1.3%.
The characteristics of R&D asked in the French R&D surveys show that the

share of external R&D which is done by a subsidiary, a �rm within the group, a
public or a private R&D laboratory is on avarge 9.1% of total �rm�s R&D. Once
more there are only 53% of observations which have an external R&D, and 12.5%
of them with a share of external R&D above 25%. The R&D is mainly devoted
to applied R&D (44%) rather than for experimental R&D or development (44%).
Only 4% of total R&D is devoted to basic or fundamental R&D. There are no
signi�cant di¤erences between innovators and non-innovators with respect of
the types of R&D : basic, applied or experimental.
31% of observations exhibit a public support to R&D by grants or subsi-

dies11 . But the average rate of subsidies is small with 5.3% of total R&D. In
fact only one quarter of �rms receives a subsidies larger than 1% of their total

11We don�t take account of the R&D tax credit for Franch �rms because they are general,
from the �srt euro of R&D since a �rst reform in 2004. A second reform in 2008 has increased
the indirect support to &D by the r&D tax credit which is now one of the most generous in
the world.
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R&D. The direct public support for R&D is highly concentrated on a few large
�rms. There is a signi�cant di¤erence for product or process innovators which
are more often aided by government for their R&D. However there is no sig-
ni�cant di¤erence in the rate of subsidies for the product innovators, while the
di¤erence is signi�cant, but weak in favor of process innovators (+0.7%).

All Sample Product Innovation Process Innovation
Variable Mean Std.Dev. Dif. Mean Var. Ratio Dif. Mean Var. Ratio
Employment 841 740 362 ��� 2:874 ��� 468 ��� 4:569 ���

R=Y 0:173 0:291 �0:008 �� 0:819 ��� 0:0129 ��� 0:968 ��

log(prod) 5:190 0:774 0:0251 �� 0:830 ��� �0:0357 ��� 0:882 ���

Ext: R&D 9:1% 16:4% �1:16% ��� 0:671 ��� �1:18% ��� 0:713 ���

Basic R&D 4:0% 13:5% �0:31% � 0:735 ��� 0:13% 0:873 ���

Applied R&D 51:8% 39:2% 0:47% 0:908 ��� �0:21% 0:911 ���

Experim: R&D 44:2% 39:4% �0:17% 0:925 ��� 0:08% 0:925 ���

Subsidies 30:8% 46:1% 6:39% ��� 1:135 ��� 6:76% ��� 1:141 ���

Public R&D 5:3% 15:0% 0:25% 0:926 ��� 0:69% ��� 1:042 ���

R&D Lab 55:2% 49:7% 13:71% ��� 0:972 � 9:94% ��� 0:971 �

Hitech 48:9% 45:3% 7:81% ��� 0:940 ��� 10:55% ��� 0:971 �

Computer 22:7% 38:5% 6:43% ��� 1:212 ��� 6:72% ��� 1:244 ���

Environment 5:4% 16:8% 0:46% �� 0:912 ��� 0:62% ��� 0:993
NewMat 12:9% 29:4% 3:24% ��� 1:170 ��� 4:12% ��� 1:256 ���

Biotech 7:8% 25:3% �2:32% ��� 0:749 ��� �0:90% �� 0:873 ���

37 847 observations, 7 651 �rms, 2000 �2013.
Product innovators : 26 267 observations (69.4%), Process innovators : 24 869 observations (65.7%)
Dif. Mean : Di¤erence in means between innovators and non-innovators, with associated t-test.
Var. Ratio : Variance Ratio between innovators and non-innovators, with associated F-test
*** : signi�cant at 1% level, ** : signi�cant at 5% level, * : signi�cant at 10% level.

Table 4 : Descritive Statistics and tests on the variables.

A formal research laboratory inside the �rm seems to have a large impact
on the innovation process. Even though 55% of �rms declare on average to have
such a research laboratory, the share is 59% for product innovators and process
innovators. The di¤erences with the non-innovators are here large and very
signi�cant. Finally, the share of R&D in new techhnologies which is splited in
four categories : computer science, environment, new materials and biotechnolo-
gies12 . On average, about 23% of R&D is done in computer science (hardware,

12There are two other categories : the nanotechnologies category which appears only since
2007, with less than 1.4% of R&D on average. We have pooled this category with the new
materials category. Finaly, we have excluded the category "social sciences and humanities"
which represents 1.2% of total R&D, but which could not be considered as a hitech R&D.
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software, networks, applications). while the second most important category
is the research in new materials (including nanotechnologies) with 13%. The
biotechnologies represent on average less than 8% of the total R&D which is
quite small. But this is concentrated on a few industries (chemicals, pharmaceu-
ticals). There is only 5% of R&D in environment (green product, new methods
of production protecting the environment, reduction in pollution,...). For these
categories of R&D, the di¤erences between (product / process) innovators and
non-innovators are signi�cant in favour of innovators which devoted a larger
share of their R&D to these new technologies. However there is an exception
with the biotechnologies where the innovators do less R&D in this category than
non-innovators. This can be explaines by the fact that biotechnologies are used
only in a few industries which account for a small part of �rms in the sample.
The innovators in other industries do more R&D in other categories which leads
to this e¤ects.

4.2 A simple model

A �rst simple model with only the e¤ects of the size of �rms and the R&D
instensity has been estimated with di¤erent estimators. First we consider a
probit estimator without individual e¤ects, separately for the two types of inno-
vations: product or process. We performed also a bivariate probit estimation,
still without any individual e¤ects. This allows to estimate the correlation be-
tween between the idiosyncratic shocks in both types of innovations. Then
we estimate the probit model with individual random e¤ects : separately for
each type of innovation, and �naly with a possible correlation between the idio-
syncratic errors terms (like in the bivariate standard probit model) and also a
possible correlation betwen the individual e¤ects standing for the unobserved
characteristcics of �rms. This is the method developped in the section 2 of the
paper. The Table 5 shows the results of these estimations, with a full set of time
dummies which are are always jointly signi�cant, but are not reported here.
All the parameters estimates are highly signi�cant because the sample size is

large with 37 847 observations, while there are up to 36 structural parameters to
estimate in the full bivariate model plus the two standard errors of the individual
e¤ects and the two correlation coe¢ cients. Moreover the likelihood ratio tests
reject clearly the assumptions of the absence of individual e¤ects, as well as
the zero correlations between these individual e¤ects or between the equations.
The standard errors of the individual e¤ects are quite the same for both types
of innovations. They are only slightly larger in the case of correlated individual
e¤ects. This correlation between the individual e¤ects is very large with an
estimates of b� = 0:78. Therefore the unobserved individual characteristics of
the �rm a¤ect in the same way the probability to innovate in product or in
process. A given set of �rm characteristics leads to both types of innovations or
none of these innovations. Finally the bivariate panel probit estimation allows
to disentangle the correlation between the individual e¤ects from the correlation
in the idiosyncratic error terms between the two equations, which is precisely
estimated with b� = 0:49. This is smaller relative to the estimated correlation in
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a model without individual e¤ects (b� = 0:66). This suggests that a part of the
correlation between innovations is due to the unobserved �rm�s characteristics.

PROBIT PANEL PROBIT
UNIVARIATE BIVARIATE UNIVARIATE BIVARIATE

PRODUCT INNOVATION
L 0:020 0:022 0:026 0:020

(0:006) (0:006) (0:007) (0:005)
L2=1000 �0:081 �0:089 �0:109 �0:084

(0:0027) (0:028) (0:034) (0:027)
(R=Y ) 0:155 0:174 0:515 0:460

(0:098) (0:098) (0:110) (0:108)

(R=Y )
2 �0:238 �0:246 �0:373 �0:332

(0:070) (0:071) (0:078) (0:077)
�1 0:548 0:598

(0:017) (0:021)
PROCESS INNOVATION

L 0:031 0:033 0:026 0:028
(0:008) (0:008) (0:009) (0:006)

L2=1000 �0:126 �0:098 �0:096 �0:103
(0:035) (0:029) (0:036) (0:027)

(R=Y ) 0:480 0:487 0:741 0:784
(0:096) (0:096) (0:106) (0:106)

(R=Y )
2 �0:357 �0:357 �0:437 �0:435

(0:068) (0:069) (0:076) (0:075)
�2 0:526 0:559

(0:017) (0:019)
CORRELATIONS

� (Errors) 0:656 0:488
(0:010) (0:010)

� (Ind. E¤.) 0:784
(0:008)

Log:Lik: �46270 �42817 �40422 �37962
37 847 observations, 7 651 �rms, 2000 - 2013.
Asymptotic standard errors in parenthesis.

Table 5 : Simple Model - Parameter Estimates

The results exhibit a clear non-linear e¤ect of the size, even though the non-
linearity has a signi�cant e¤ect on large �rms with more than 20 000 employees.
The maximum e¤ect of the size is reached for a total employment of about 120
000 employees for product innovation, and about 130 000 employees for process
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innovation. This threshold (120 000 employees) concerns only 59 observations
(0.16%) on only 8 di¤erent �rms ! The e¤ect of the size on innovation is alwways
smaller for the product innovation than for the process innovation, whatever the
considered model. In fact a similar non-linear e¤ect is found with or without
individual e¤ects in the estimation.
On the othe hand, the introduction of individual e¤ects rises the non-linear

e¤ect of the R&D intensity on the innovations in product or in process. The
estimates are larger in magnitude for the level and quadartic coe¢ cients for both
types of innovations. The e¤ect of the R&D intensity is positive but decreasing
In consequence the e¤ect of R&D intensity on product innovation increases up to
a maximum which is routhly 35% of the total �rm�s turnover without individual
e¤ects, while the maximum e¤ect is found for a R&D instensity by 70% when
individual e¤ects are introduced in the model. The two thresholds for process
innovations are higher with 68% without individual e¤ects and 92% with the
individual e¤ects. Once again, the R&D intensity e¤ects is larger for process
innovations than for product innovations.

4.3 An extended model

The Table 6 presents the results for an extended model where the other explica-
tive variables are introduced in the estimation. Only the estimates for the full
bivariate probit model with correlated e¤ects are presented, corrsponding to the
fourth columns in Table5 for the simple model. We have also computed the av-
erage marginal e¤ects for each variable in the model which measure the average
impact of each explanatory variable on the probability to innovate in product
or in process. The standard errors of the individual e¤ects are roughly the
same as in the simple model with only a very slight reduction to �1 = 0:55 and
�2 = 0:54. The additional explanatory variables do not into account a large
share of the individual �rm�s characteristics. It still has a large unobserved
heterogeneity in �rm�s innovation behavior. The correlation between the idio-
syncratic error terms (b� = 0:48) and between the individual e¤ects (b� = 0:78)
are quite unchanged with these additional variables. They do not bring speci�c
elements in the product or process innovation behavior.
The non-linear e¤ects of the �rm�s size or the R&D intensity is the same

as above with a maximum e¤ect at a large value : 120 000 employees for the
product innovations and 130 000 employees for the process innovations. Relative
to a �rm with zero employment, a �rm at the median employment (173 workers)
has a 0.50% rise in the probability to innovate in product, and a 0.84% rise in the
probability to innovate in process. For the R&D instensity, the same incrteasing
and convex e¤ects is found for both types of innovations, with a maximum
e¤ect at a R&D intensity rate of respectively 68% and 90% for product or
process innovations. Relative to a �rm with zero R&D, a �rm at the median
R&D instensity value (5.2%) shows an increase in the probability to innovate
by 1.51% for product innovation, and 2.91% for process innovations. The e¤ect
of the size and the R&D intensity are quite small for a large proportion of �rms
in the sample.
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ESTIMATES MARGINAL EFFECTS
PRODUCT PROCESS PRODUCT PROCESS

L 0:022��� 0:031��� 0:0066��� 0:0100���

(0:006) (0:006) (0:0017) (0:0019)
L2=1000 �0:093��� �0:117��� �0:028��� �0:038���

(0:028) (0:027) (0:008) (0:009)
(R=Y ) 0:337��� 0:572��� 0:1002��� 0:1859���

(0:119) (0:117) (0:0354) (0:0380)

(R=Y )
2 �0:249��� �0:320��� �0:0740��� �0:1039���

(0:080) (0:078) (0:0237) (0:0255)
log (prod) 0:056��� 0:015 0:0165��� 0:0049

(0:020) (0:019) (0:0058) (0:0062)
Ext: R&D �0:125� �0:193��� �0:0373� �0:0626���

(0:069) (0:068) (0:0207) (0:0221)
Applied R&D 0:120 �0:086 0:0357 �0:0281

(0:079) (0:078) (0:0297) (0:0252)
Experim: R&D 0:100 �0:037 0:0297 �0:0121

(0:079) (0:078) (0:0235) (0:0253)
Subsidies Index 0:177��� 0:131��� 0:0526��� 0:0426���

(0:028) (0:027) (0:0082) (0:0086)
Subsidies Rate �0:131� �0:091 �0:0390� �0:0296

(0:079) (0:020) (0:0236) (0:0252)
R&D Lab 0:431��� 0:337��� 0:1283��� 0:1094���

(0:020) (0:020) (0:0060) (0:0064)
Computer 0:289��� 0:365��� 0:0860��� 0:1184���

(0:038) (0:038) (0:0114) (0:0122)
Environment 0:058 0:247��� 0:0173 0:0801���

(0:069) (0:067) (0:0204) (0:0217)
New:Mat: 0:271��� 0:404��� 0:0805��� 0:1313���

(0:040) (0:039) (0:0120) (0:0127)
Biotech �0:123�� 0:049 �0:0367�� 0:0160

(0:052) (0:051) (0:0153) (0:0165)

37 847 observations, 7 651 �rms, 2000 - 2013.
Asymptotic standard errors in parenthesis.
*** : signi�cant at 1% level, ** : signi�cant at 5% level, * : signi�cant at 10% level.

Table 6 : Estimates of the Full model with Average marginal e¤ects.

The e¤ect of the �rm�s productivity is positive for both types of innovation,
but only signi�cant for product innovations with a marginal e¤ect of 0.0165.
This means that a �rm which is twice more productive than another �rm�s has
an average increase in the probability to innovate in product by 1.1%. This e¤ect
is again small in magnitude. There is a negative e¤ect of the share of external
R&D on the probability to innovate. The probbaility to innovate is smaller in a
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�rm with a large share of external R&D. If a �rm has only external R&D, this
reduces the probability to innovate by 3.7% in product and by 6.3% in process.
Once again here, the e¤ect is larger for process than for product innovations.
In the other hand the composition of internal R&D between basic, applied or
experimental R&2D has no signi�cant e¤ect on the probability to innovate for
both types of innovations. The public support to the private R&D by direct aid
(grants, subsidies,...) has a positive e¤ect on the probability to innovate but
this e¤ect is only signi�cant when a dummy variable for such aid is introduced
in the model. The subsidy rate (the share of R&D publicly supported) has even
a negative, but not signi�cant, e¤ect on both types of innovations. The fact to
received a direct aid to R&D from the government can be considered as a signal
that the R&D could lead more probably to an innovation in product (+5.3%)
or in process (+4.3%). even though the marginal e¤ects is larger for product
innovations, the di¤erence with the product innovation is not signi�cant. The
intensity of the aid has then a decreasing e¤ect on the probability to innovate,
even though it remains always positive.
A formal research laboratory inside the �rm has a very important and signif-

icant e¤ect on the probability to innovate, relative to a di¤use research made by
the �rm. A research laboratory increases the probability to innovate by 12.8%
for product innovation and by 10.9% for process innovation. The di¤erence be-
tween the types of innovation is again not signi�cant. May be when the �rm
installs a formal research laboratory, it expects larger results in terms in inno-
vation. Finally the categories of R&D in high technologies has jointly a positive
e¤ects on the probability to innovate. If R&D is devoted only to computer sci-
ence, the probability to innovate is increased by 8.6% for product and 11.8% for
process innovations. The e¤ect is larger for process innovations, even though
the di¤erence with product innovation is not really signi�cant. This means that
R&D in computer science has a greater e¤ect in �rm�s production than in the
introduction to new products. The same e¤ect are found for the R&D in new
materials which has an larger impact on the probability to innovate in process
(+13.1%) than on the probability to introduce a new product (+8.1%). Here the
di¤erence between product and process innovation is signi�cant. The R&D in
environment has only a positive e¤ect on the probability to innovate in process.
It seems that it is not the way for a product innovation, but it should implies
more sustainable techniques of production by limiting pollution or saving en-
ergy. Finally the R&D in biotechnologies has a negative and sign�cant e¤ect
on product innovation, even though it has no e¤ect on process innovation. The
interpretation of this e¤ect could be linked to the descriptive statistics above
where we found that only a few �rms has R&D in biotechnologies, and that
they are concentrated on only a few industries.
This shows that the di¤erences in the innovation behavior is not globally

di¤erent betwwen the product or the process innovation. The individual char-
acteristics of the �rms are a main determinants, while the explanatory variables
has the same e¤ects on product or proceess innovation, except that they have a
larger e¤ect on the probability to innovate in process than in products. The lack
of information of the �rm�s market, its competitive position, and the strength
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of competition in its industry could be explained this di¢ culty to assess the
product innovation behavior. For the process innovation, ther is a lack of infor-
mation on the quality of workers or the degrees or machine use in the production
process.

5 Conclusions

In this article, an alternative metod of estimation of a bivariate probit model on
panel data is presented. In such bivariate probit model on panel data, the likeli-
hood function implies to integrate the density conditional over the distribution
of the individual random e¤ects in order to eliminate them by taking an aver-
age density. In the literature, some papers use simulations in order to compute
the double integral. The alernative method relies on a double Gauss-Hermite
quadrature procedure in order to evaluate the double integral. This paper de-
velops the log-likelihood function in this case and a program is written in Stata
to estimate such model. This program should be optimized in the future in
order to reduce estimation time, may be by using an adaptative Gauss-Hermite
procedure.
On panel data , it is important to introduce individial speci�c e¤ects in

order to avoid the omitted variable bias. This is shown in a simulation exercise
where the pooled bivariate probit model is clearly rejected when there is no
individual e¤ects in estimation. The separated estimation of the two probit
models is clearly consistent due to the fact that the model is correctly speci�ed
and that the correlations between the individual e¤ects or between the error
terms are only of second order. However a bivariate probit model allows also
to estimate consistently the correlation between the individual random e¤ect
and between the idiosyncratic error terms in the 2 equations model. But the
procedure should be long even thouh the number of iterations is reduced.
This procedure is applied in the case of the estimation of the determinants

of product and process innovations on a panel of French �rms during the period
2000 - 2013. There is a positive correlation between the idiosyncratic errors
terms for both innovations that a shock a¤ects in the same way both types
of innovations. Here the model explaining the product or process innovations
showd that the size of the �rm and positively on the R&D intensity.
The unobserved heterogeneity also a¤ects both product and process inno-

vations with a very high positive correlation of 78 %, which can be due to the
fact that our model is very simple. The �rm�s unobserved characteristics may
lead to a �rm�s innovative behaviour for both innovations, but these character-
istics should come from the internal organization of the �rm or from the market
on which it operates. A further investigation of these determinants should be
on the next agenda of research. The large correlated e¤ects could be also the
sign of a high persistence of innovative behaviour at the �rm�s level. The �rm�s
characteristics can also a¤et persistenly the product or process innovations. We
should investigate the persistence of this innovative behaviour in a following
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paper.
There is a positive non-linear convex e¤ect of the size of the �rm of the

same magnitude for both types of innovations, while there is also a non-linear
positive e¤ect of the R&D intensity, but these e¤ects is larger for process than
for product innovation. We found some weak di¤erences in the determinants of
product or process innovation behavior. It seems that the di¤erences betwwen
them are di¤uclt to assess within a �rm or that a product innovation is always
linked. The introduction of a new product leads to the introduction of a new
process of production. The lack of information on the market on which the
�rms operates, or the level of competiton on this market could explained the
di¢ culty to assess a di¤erence between the two innovations.
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Appendix A : Characteristics of the sample

Year Number Percent
2000 1 379 3.6 %
2001 1 552 4.1 %
2002 1 899 5.0 %
2003 2 588 6.8 %
2004 3 065 8.1 %
2005 2 988 7.9 %
2006 3 818 7.4 %
2007 2 438 6.4 %
2008 2 847 7.5 %
2009 3 086 8.2 %
2010 3 058 8.1 %
2011 3 161 8.4 %
2012 3 654 9.7 %
2013 3 304 8.7 %

TOTAL 37 847 100 %

Table A1 : Number of Observation by Year
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Industry Number Percent
Agriculture 57 0.7 %
Energy 69 0.9 %
Food, Beverage 349 4.6 %
Textile, Cloths 171 2.2 %
Wood, Furnitures 105 1.4 %
Chemicals 441 5.8 %
Pharamceuticals 165 2.2 %
Rubber, Plastics 376 4.9 %
Fabricated Metals 411 5.4 %
Electrical equipments 601 7.9 %
Electronic Goods 262 3.4 %
Machinery 553 7.2 %
Transport Equipments 241 3.1 %
Other Manufacturing 338 4.4 %
Building 97 1.3 %
Trade 470 6.1 %
Edition, Television 471 6.2 %
Software, Computing 877 11.5 %
Finance, Insurance 110 1.4 %
Management 863 11.3 %
R&D 400 5.2%
Other Business Services 187 2.4 %
Personal Services 37 0.5 %
TOTAL 7 651 100 %

Table A2 : Industry composition of the sample
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